Exchange of Stabilities in Couette Flow between Cylinders with Navier-slip Conditions

نویسندگان

  • ISOM H. HERRON
  • PABLO U. SUÁREZ
  • G. I. Taylor
چکیده

Viscous Couette flow is derived for flow between two infinitely long concentric rotating cylinders with Navier slip on both. Its axisymmetric linear stability is studied within a regime that would be hydrodynamically stable according to Rayleigh’s criterion: opposing gradients of angular velocity and specific angular momentum, based on the rotation rates and radii of the cylinders. Stability conditions are analyzed, by methods based on those of Synge and Chandrasekhar. For sufficiently small slip length on the outer cylinder no instability occurs with arbitrary slip length on the inner cylinder. As a corollary, slip on the inner cylinder is shown to be stabilizing, with no slip on the outer cylinder. Two slip configurations are investigated numerically, first with slip only on the outer cylinder, then second with equal slip on both cylinders. It is found that instability does occur (for large outer slip length), and the principle of exchange of stabilities emerges. The instability disappears for sufficiently large slip length in the second case; Rayleigh’s criterion provides an explanation for these phenomena.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Onset of Instability in Hydromagnetic Couette Flow

The stability of viscous flow between rotating cylinders in the presence of a constant axial magnetic field is considered. The boundary conditions for general conductivities are examined. It is proved that the Principle of Exchange of Stabilities holds at zero magnetic Prandtl number, for all Chandrasekhar numbers, when the cylinders rotate in the same direction, the circulation decreases outwa...

متن کامل

Finite Integral Transform Based Solution of Second Grade Fluid Flow between Two Parallel Plates

The importance of the slip flow over the no-slip condition is widely accepted in microscopic scaled domains with the direct impact on microfluidic and nanofluidic systems. The popular Navier Stoke’s (N-S) flow model is largely utilized with the slip flow phenomenon. In the present study, the finite integral transform scheme along with the shift of variables is implemented to solve the equation ...

متن کامل

Entropy Generation In an Unsteady MHD Channel Flow With Navier Slip and Asymmetric Convective Cooling

The combined effects of magnetic field, Navier slip and convective heating on the entropy generation in a flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel plates under a constant pressure gradient have been examined. Both the lower and upper plates of the channel are subjected to asymmetric convective heat exchange with the ambient fluid. T...

متن کامل

Using Burnett Equations to Derive an Analytical Solution to Pressure-Driven Gas Flow and Heat Transfer in Micro-Couette Flow

The aim of the present study is deriving an analytical solution to incompressible thermal flow in a micro-Couette geometry in the presence of a pressure gradient using Burnett equations with first- and second-order slip boundary conditions. The lower plate of the micro-Couette structure is stationary, whereas the upper plate moves at a constant velocity. Non-dimensional axial velocity and tempe...

متن کامل

The angular momentum transport by the strato-rotational instability in simulated Taylor-Couette flows

Aims. To investigate the stability and angular momentum transport by the strato-rotational instability in the nonlinear regime. Methods. The hydrodynamic compressible equations are solved in a cartesian box in which the outer cylinder is embedded. Gravity along the rotation axis leads to density stratification. No-slip boundary conditions are used in the radial direction, while free-slip condit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012